LFPy-tutorial CNS2013

Espen Hagen1, Szymon Łęski2, Henrik Lindén3, Eivind S Norheim1, Klas H Pettersen1, Gaute T Einevoll1

1Norwegian University of Life Sciences (UMB), Ås, Norway
2Nencki Institute of Experimental Biology, Warsawa, Poland
3Royal Institute of Technology (KTH), Stockholm, Sweden
LFPy - Introduction

- **LFPy** is a **Python**-package for calculating extracellular potentials from multi-compartment neuron models

- **LFPy** home page: http://compneuro.umb.no/LFPy

- Live LFPyLubuntu image: http://goo.gl/1sOiM

 - Use .iso-file with Virtualbox or similar, see http://www.virtualbox.org

 - Comes with the **Python** `--pylab` environment, **LFPy** and **NEURON** preinstalled
LFPy - Introduction

- **Topics:**
 - Why model extracellular potentials?
 - Biophysical modeling scheme (brief)
 - LFPy overview
 - LFPy installation
 - Brief explanation of the main classes in LFPy
 - LFPy usage
 - LFPy provided examples
LFPy - Introduction

- Why model extracellular potentials?
 - Improve understanding of experimental measurements:
 - Methods validation:
LFPy - Introduction

- Why model extracellular potentials?
 - O14: Taxidis et al.; Extracellular field signatures of CA1 spiking cell assemblies during sharp wave-ripple complexes
 - P119: Hagen et al.; Hybrid scheme for modeling LFPs from spiking cortical network models
 - P120: Ness et al.; Modeling Extracellular Potentials in Microelectrode Array Recordings
 - P417: Chintaluri et al.; Realistic simulations of local field potentials in a slice
 - others: P41, P126, P255, ...
LFPy - Introduction

- Forward-modeling scheme for extracellular potentials for multi-compartment neuron models:
 \[
 \Phi(r, t) = \frac{1}{4\pi \sigma_e} \sum_{n=1}^{N} \frac{I_n(t)}{|r - r_n|}
 \]

- Line-sources (Holt & Koch 1999)
 \[
 \Phi(r, t) = \frac{1}{4\pi \sigma_e} \sum_{n=1}^{N} I_n(t) \int \frac{dr_n}{|r - r_n|}
 \]

- Current conservation imply:
 \[
 \sum_{n=1}^{N} I_n(t) = 0
 \]
Why Python?

- Object oriented
- Easy to script
- Flexible
- Plethora of packages for visualizations and analysis

- http://pypi.python.org/
 - *pypi*: ~32500 packages
- Interface other programming languages
LFPy - Installation

● Make sure **Python**-prerequisites are met:
 – **neuron** (`./configure --with-nrnpython`)
 – **Cython, NumPy, SciPy, matplotlib**
 (opt. **ipython** (notebook), **h5py**, **mpi4py**)

● Download the **LFPy** source code:
 [http://compneuro.umb.no/LFPy/downloads/](http://compneuro.umb.no/LFPy/downloads/LFPy-0.9.5.tar.gz)

● Unzip:
 `tar –xzf LFPy-0.9.5.tar.gz`

● Or, get development version of **LFPy** using subversion:
 `svn co \`
LFPy - Installation

- Install from LFPy source code:

  ```
  cd /path/to/LFPy
  python setup.py install --user
  ```

- Easy installation of LFPy:

  ```
  easy_install LFPy --user
  ```

- Small test with IPython:

  ```
  ipython -c "import LFPy"
  ```

- With NEURON:

  ```
  nrngui --python -c "import LFPy"
  ```
LFPy – Main Classes

- The primary **LFPy**-classes employed to set up simulations are:
 - `LFPy.Cell`
 - `LFPy.Synapse`
 - `LFPy.RecExtElectrode`

- Other classes and functions:
 - class `LFPy.StimIntElectrode`
 - functions `LFPy.lfpcalc.calc_lfp*`, `LFPy.inputgenerators.*`, `LFPy.tools.*`

- For detailed information please refer to the online documentation:
 http://compneuro.umb.no/LFPy/classes.html
LFPy – Main Classes

- **LFPy.Cell**:
 - Uses **NEURON** under the hood
 - Loads the morphology
 - Set the neuronal properties:
 - membrane mechanisms
 - number of compartments
 - Set cell location and rotation
 - Collect the geometry into arrays
 - Methods for segment indices
 - positioning in 3D
 - Simulation control
LFPy - Main Classes

- **LFPy.Synapse:**
 - attach synapse-objects onto cell objects
 - Keyword arguments:
 - **cell**—object
 - compartment index, **idx**
 - synapse type, **Exp2syn**
 - mechanism arguments
- Set up as **NetCon** objects (see **NEURON** documentation) for synaptic weights and times.
LFPy - Main Classes

- **LFPy.RecExtElectrode**
 - extracellular recording devices
 - Main arguments:
 - Coordinates of contact points
 - extracellular conductivity
 - method (point/line-sources)
 - Optional:
 - radius and surface normal vectors for the contacts
 - n-point surface area averaged potential

LFPy class—objects:
- LFPy.Synapse
- LFPy.StimIntElectrode
- LFPy.Cell
- LFPy.TemplateCell
- LFPy.RecExtElectrode
LFPy - Usage

- Working in local folder:
  ```
  cd /path/to/LFPy/examples/
  ```
- Have a look at the two provided **ipython** notebooks
 - Post-synaptic response of somatic synapse
 - LFPs from a single, apical synapse
- Employ an interactive ipython notesession:
  ```
  ipython notebook --pylab inline
  ```
- Two interactive examples should be available:
LFPy - Usage

- **Interactive example 1:**
 - Calculate the post-synaptic response of somatic synapse
LFPy - Usage

- Interactive example 2:
 - Calculate LFPs arising from a single, apical synapse
LFPy – Provided example files

- **LFPy** comes with example scripts displaying different usage cases:
 - using active cell models
 - using many synapses
 - dealing with a population of cell objects

- Example files in:
 `/path/to/LFPy/examples/`

- `.mod`-files may be compiled for active stuff, running `nrnivmodl`

 inside the examples folder
LFPy - Provided example files

- `/path/to/LFPy/examples/example1.py`:
 - Single apical synapse response. Passive membrane
LFPy - Provided example files

/path/to/LFPy/examples/example2.py:

- Spiking L5b model (Hay et al., 2011)
LFPy - Provided example files

• /path/to/LFPy/examples/example3.py:
 – Hybrid model approach with MPI
LFPy - Provided example files

- `/path/to/LFPy/examples/example6.py`:
 - Distributed exc/inh. synapses. Active membrane.
LFPy - Provided example files

- `/path/to/LFPy/examples/example_mpi.py`:
 - A small population using MPI. Active membranes.
LFPy - Tutorial

- Questions?
- If not, feel free to test out **LFPy** 😊